

The SaniPath Tool:

Assessing Public Health Risks from Unsafe Fecal Sludge Management in Poor Urban Neighborhoods

Christine L. Moe, PhD

Center for Global Safe Water, Sanitation and Hygiene

Rollins School of Public Health

Emory University

ROLLINS SCHOOL OF PUBLIC HEALTH CGSW Center for Global Safe WASH

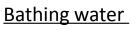
Leading and Learning in WASH

Pathways of Exposure to Fecal Contamination

<u>Floodwater</u>

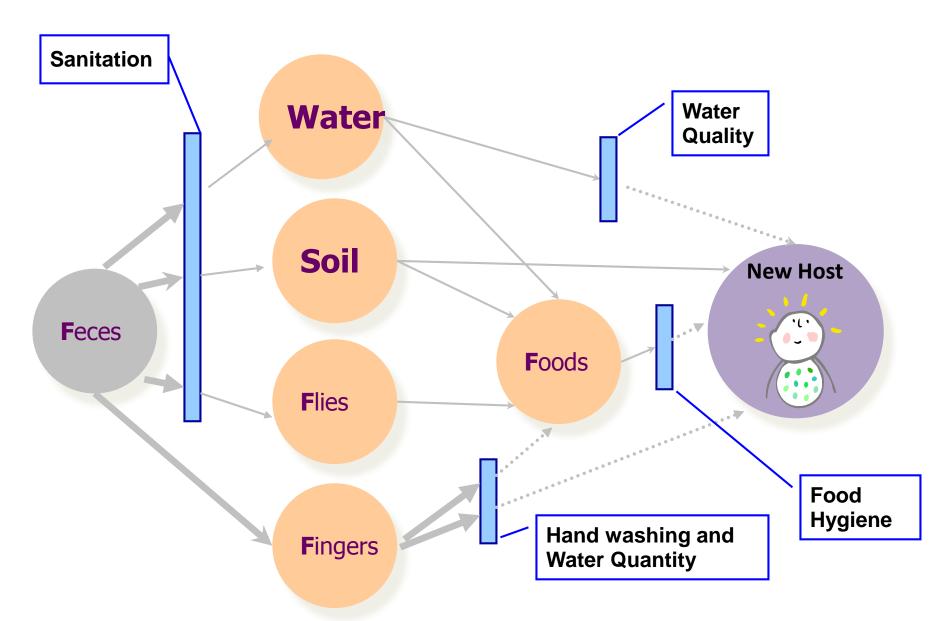
Public latrines

Open drains



Surface water

Drinking water



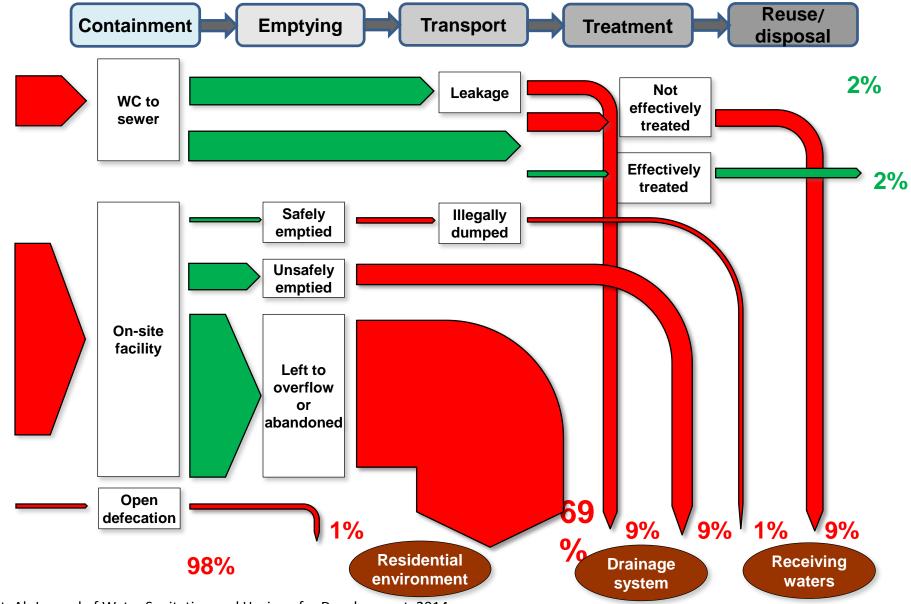
Wastewater-irrigated produce

<u>Soil</u>

Interrupting Fecal-Oral Transmission

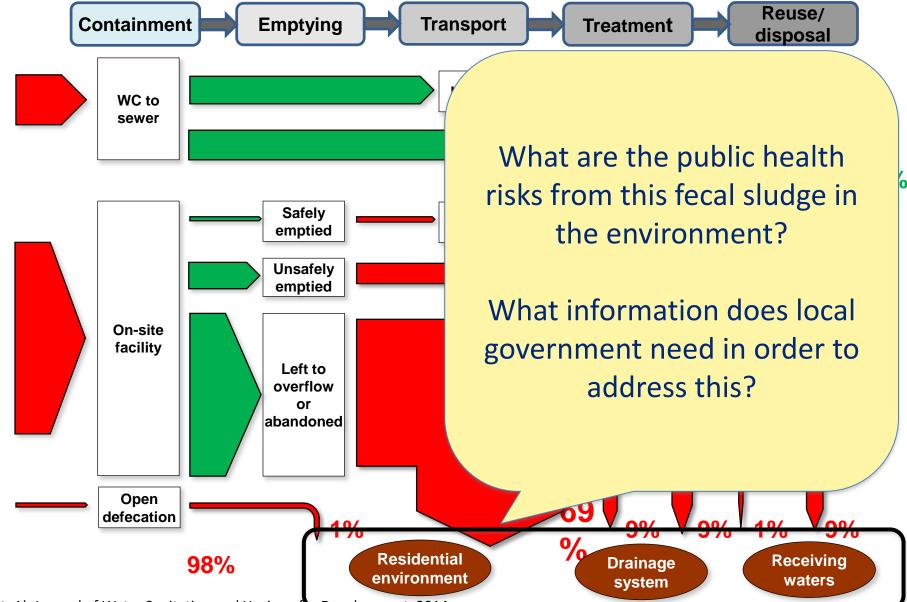
Expected Impact of Sanitation Interventions

Sanitation intervention contains excreta

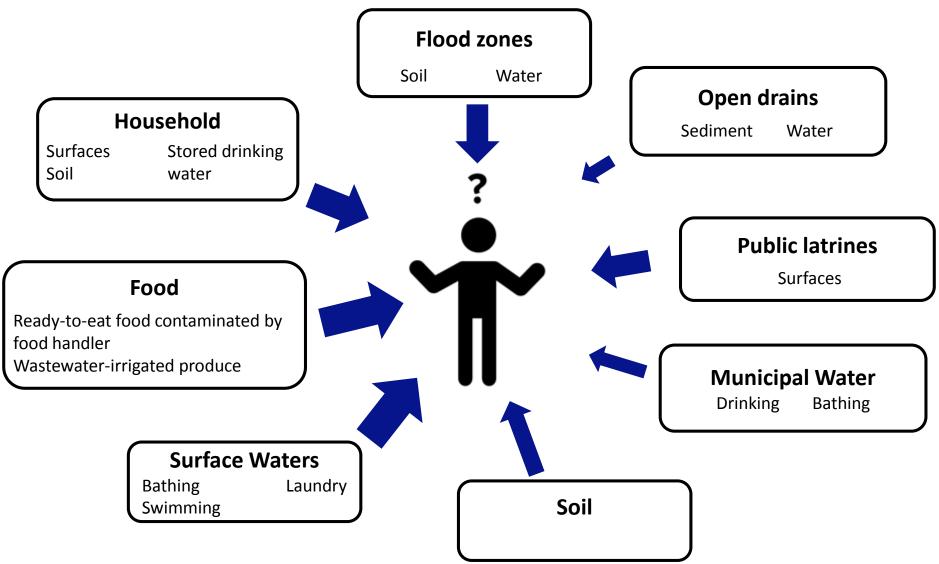

Is this really what happens??

Reduction of fecal contamination in the environment

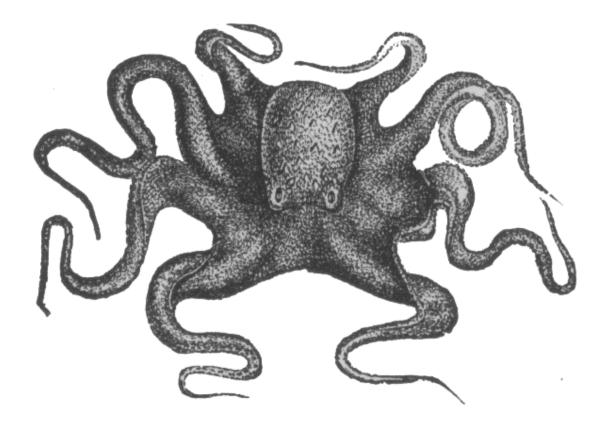
Less exposure to fecal contamination and enteric pathogens Less diarrheal disease, less helminth infection, taller children


EXPOSURE ASSESSMENT

Shit Flows Analyses show that Fecal Sludge is NOT Contained – Reservoirs in Urban Environment


Peal et. Al. Journal of Water Sanitation and Hygiene for Development. 2014

Shit Flows Analyses show that Fecal Sludge is NOT Contained – Reservoirs in Urban Environment

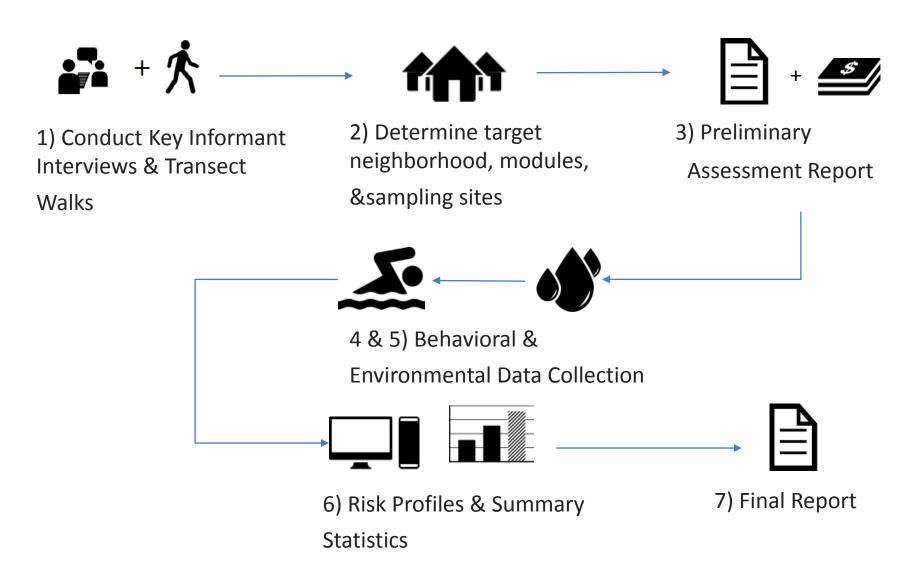


Peal et. Al. Journal of Water Sanitation and Hygiene for Development. 2014.

Multiple exposure routes with different risks Which exposures pose the greatest risk?

Confused designed by Jessica Look for The Noun Project

Which or how many **EXPOSURE PATHWAYS** do you need to cut before you see an impact on health?



The SaniPath Rapid Assessment Tool is designed to <u>assess public health risks related to poor sanitation</u> and to <u>help prioritize sanitation investments</u> based on the exposures that have the greatest public health impact.

- Based on in-depth risk assessment in Accra, Ghana
- Systematic, customizable method to collect relevant data on exposure to fecal contamination in low-income, urban neighborhoods
- Designed for use by community, government, and development partners to help guide decision-making and advocacy surrounding urban sanitation
- Synthesize data using open-source software package
- Tool has been used in Accra, Ghana; Vellore, India; Maputo, Mozambique

Process Diagram

Sarah Abraham, Martha Ormiston, Gilad Fried, and Juan Pablo Bravo from The Noun Project created the icons interview, neighborhood, water, and computer. Schematic created by Suraja Raj

Data Collection Methods

- Behavioral Exposure Data
 - reported frequency of behavior of adults and children that leads to exposure to fecal contamination
- Environmental Microbiology Data
 - Collect environmental samples from relevant exposure pathways
 - Analyze for E. coli

Household Surveys | Community Meetings | School Surveys

- Self-reported behavior of adults and children (5-12 years)
- Recommended 100/neighborhood
- ~30 minutes per household

Household Surveys | Community Meetings | School Surveys

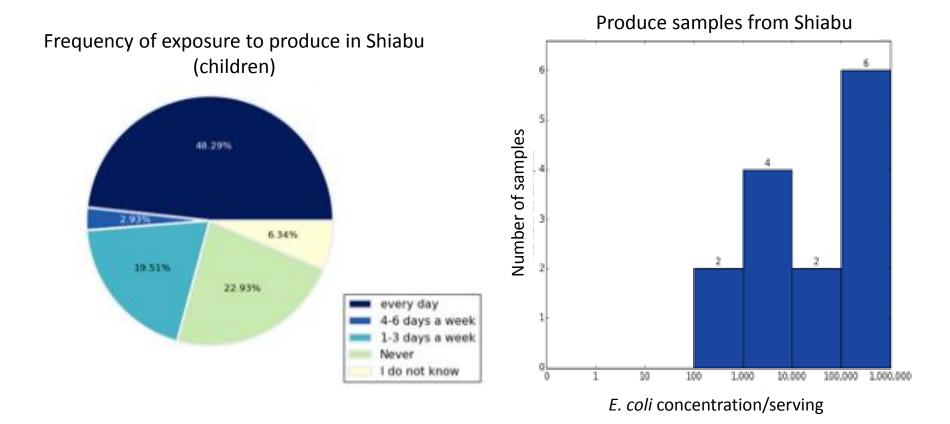
- Voting method (envelope with buttons)
- Self-reported behavior of adults and children (age 5-12)
- Recommended 2 male and 2 female per neighborhood
- ~ 1.5 hours per interview

Household Surveys | Community Meetings | School Surveys

- Voting method (raising hands)
- Self –reported behavior of children and adults
- Children aged 10-12
- Recommended 4/neighborhood
- ~1 hour per classroom

Sample Sizes

Sample Types and Quantities


Survey Types and Quantities

Exposure Pathway	Total
Sample Type	Samples*
Drain Water	10
Municipal Drinking Water	10
Raw Produce	10
Public Latrine Surface	
Swabs	10
Soil Samples	10
Surface Water	10
Bathing Water*	10
Flood Water*	10
Total	80

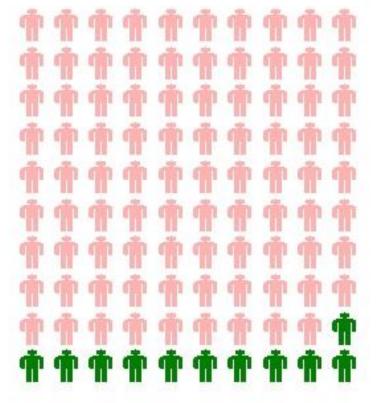
Survey Type	Quantity**
Key Informant Interviews	2
Household Surveys	100
School Group Surveys	4
Community Group Surveys	4

* These estimates assume 10 samples per exposure pathway in one neighborhood.
Each sample will be processed at 2-3 recommended dilutions.
**These survey estimates are for one neighborhood.

SaniPath Tool Outputs

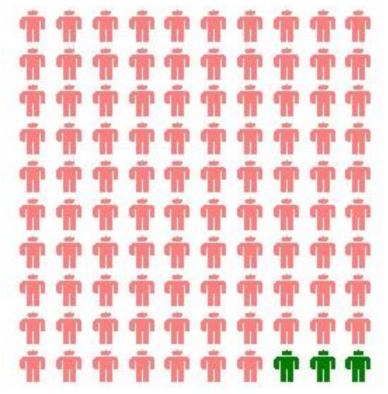
Estimating Exposure to Fecal Contamination

Behavior Frequency


Environmental Contamination Produce samples from Shiabu

Frequency of exposure to produce in Shiabu Produce Samples from Shaibu (children) Frequency of Fruits/Vegetables Contact Other parameters: in Shaibu (children) intake volumes, duration of exposure, etc. 6.34% 19:51% 22.93% every day 4-6 days a week 1-3 days a week Never 100.000 1,000,000 Ecoli concentration / serving I do not know Drinking Water (Adult) **Percent Exposed = 89%** Log10 Dose 3.1 The mean dose and proportion of Tool uses Bayesian analysis to the population exposed are estimate the distribution of summarized from simulated environmental contamination distributions and displayed in risk and frequency of exposure. profiles (left).

SaniPath Risk Profiles


Neighborhood in Accra, Ghana

Drinking Water (Adult) Percent Exposed = 89% Log10 Dose 3.1

Neighborhood in Vellore, India

Drinking Water (Adult) Percent Exposed = 97% Log10 Dose 4.95

Risk profiles show % of population exposed per month (in red) and the average dose of fecal contamination ingested per month (darker red = higher dose).

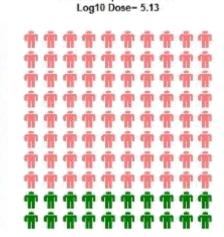
Children

Shiabu Child produce

Percent Exposed = 55 %

Log10 Dose= 5.42

Shiabu Child swabs Percent Exposed = 48 % Log10 Dose= 4.56


Shiabu Adult produce Percent Exposed - 89 % Log10 Dose- 5.94

Raw Produce

Public Latrine Surfaces

Shiabu Adult swabs

Percent Exposed = 80 %

Open Drains

Shiabu Adult drain

Percent Exposed - 33 %

Log10 Dose- 2.88

Drinking Water

Shiabu Adult drinking water Percent Exposed - 71 % Log10 Dose- 2.41

-Ť (Î

Shiabu Child drinking water Percent Exposed = 57 % Log10 Dose= 2.15

Shiabu Child drain Percent Exposed = 17 % Log10 Dose= 3.9

Adults

Overview of Tool Architecture

English (en) \$

To Calculate Value To Calculate Value DOK Collect V1.1.7 Dista collection much easier. Fill Blank Form Gett Blank Form Delete Saved Form

Mobile Data

Collection

 formhub
 Yere FM2 Recurse Big Support
 Cope

 Image: State State

Data/Form Repository

Analysis and Dashboard

Strengths and Limitations

A simple tool to characterize a complex system...

Strengths

- Significantly more rapid than indepth exposure assessment (SaniPath Phase 1)
- Systematic but flexible
- Focuses on risk behavior rather than risk perception
- Provides data for decision making
- Can be adapted to cultural contexts
- Includes quantitative environmental microbiology
- Uses mobile data collection and automated analyses

Limitations

- Requires basic laboratory capacity and equipment
- Does not (currently) provide specific recommendations based on results
- Cost could be prohibitive
- One deployment does not capture temporal and seasonal variability
- Limited sample size gives low resolution risk comparison
- Does not assess private domain
- Could be improved with studies of reliability and consistency of results

Acknowledgements

Bill & Melinda Gates Foundation:

Alyse Schrecongost, Erica Coppel, Radu Ban

Center for Global Safe Water, Emory University:

Christine Moe, Clair Null, Peter Teunis, Monique Hennink, Kelly Baker, Amy Kirby, Kate Robb, Habib Yakubu, Suraja Raj, Andrew Wang, James Michiel, Jamie Green, Heather Reese, Katherine Roguski

Water Research Institute: Joseph Ampofo

TREND: Nii Wellington

Christian Medical College, Vellore: Gagandeep Kang

Georgia Tech: Joe Brown

EpiTech Consulting: Nishant Kishore, Aaron White

Research Triangle Institute: Matthew Scruggs, Megan Tulloch, Amir Mokhtari, Stephen Beaulieu

Improve International: Susan Davis

Thank You

For more information visit **SaniPath.org**

Christine L. Moe, PhD clmoe@emory.edu